ERRATUM: SPRINGER LNM 2054

RATIONAL POINTS AND ARITHMETIC OF FUNDAMENTAL GROUPS EVIDENCE FOR THE SECTION CONJECTURE

JAKOB STIX

1. Space filling curves in their Jacobian $\S 15.2$

Unfortunately, the computations on page 199 in the paragraph Reduction to small cases suffer from a sign mistake marked in red below. The conclusion towards Theorem 223 still holds true but requires some extra care. Because also the computations of examples for genus 2 and 3 on page 201 contain a bug, Theorem 223 in the new version is now sharper: there are only two isomorphism classes of curves, both of genus 2 over \mathbb{F}_{2}, that are space filling in their jacobian.
1.1. Estimates for the class number. We recall the notation of $[S t i 13, \S 15.2]$, so X / \mathbb{F}_{q} is a smooth, projective curve of genus $g \geq 2$ and $\alpha_{1}, \ldots, \alpha_{2 g}$ are the inverses of the eigenvalues of Frobenius sorted such that $\alpha_{i+g}=q / \alpha_{i}$ for all $i=1, \ldots, g$. Due to the Albenese embedding $X \hookrightarrow \operatorname{Pic}_{X}^{0}$ we have the inequality

$$
N:=\# X\left(\mathbb{F}_{q}\right) \leq \# \operatorname{Pic}_{X}^{0}\left(\mathbb{F}_{q}\right)=: h
$$

We determine all cases when we have in fact equality. Let

$$
D_{n}=\#\{D \geq 0 ; \text { divisor of } \operatorname{deg}(D)=n\}
$$

be the number of effective \mathbb{F}_{q}-rational divisors of degree n on X. Then [LMD90] Theorem 1 reads

$$
\begin{equation*}
\sum_{n=0}^{g-2} D_{n}+\sum_{n=0}^{g-1} q^{g-1-n} D_{n}=h \cdot \sum_{i=1}^{g} \frac{1}{\left|1-\alpha_{i}\right|^{2}} \tag{1.1}
\end{equation*}
$$

We observe that $D_{0}=1$ and $D_{n} \geq N$ for $n \geq 1$, and combine [LMD90] $\S 4$ (5)

$$
\begin{equation*}
\sum_{i=1}^{g} \frac{1}{\left|1-\alpha_{i}\right|^{2}} \leq \frac{(g+1)(q+1)-N}{(q-1)^{2}} \tag{1.2}
\end{equation*}
$$

with (1.1) to obtain the estimate

$$
\begin{equation*}
h \geq(q-1)^{2} \cdot \frac{1+q^{g-1}+N\left(g-2+\frac{q^{g-1}-1}{q-1}\right)}{(g+1)(q+1)-N}=(*) \tag{1.3}
\end{equation*}
$$

We set $n(q-1)=N$ and analyse $(*)>N$ to be equivalent to

$$
\begin{align*}
& 1+q^{g-1}+n\left((g-2)(q-1)+q^{g-1}-1\right)>n\left((g+1) \cdot \frac{q+1}{q-1}-n\right) \\
\Longleftrightarrow & n^{2}+n\left(q^{g-1}+(g-2)(q-1)-1-(g+1) \cdot \frac{q+1}{q-1}\right)+1+q^{g-1}>0 \\
\Longleftrightarrow & n^{2}+n\left(q^{g-1}+(g-2)\left(q-1-\frac{q+1}{q-1}\right)-1-3 \frac{q+1}{q-1}\right)+1+q^{g-1}>0 \\
\Longleftrightarrow & n^{2}+n\left(q^{g-1}+q(g-2)\left(1-\frac{2}{q-1}\right)-4-\frac{6}{q-1}\right)+1+q^{g-1}>0 \tag{1.4}
\end{align*}
$$

Date: December 4, 2017.

The coefficient of the linear term in n is monotone increasing as a function in g and q separately in the range $g \geq 3$ and $q \geq 3$. The value of this coefficient for $g=q=3$ is 2 , hence the entire inequality holds true except possibly if $g=2$ or $q=2$.

1.2. The case of genus 2 . If $g=2$, then (1.4) reads

$$
n^{2}+n\left(q-4-\frac{6}{q-1}\right)+1+q=(n-2)^{2}+n \frac{(q+2)(q-3)}{q-1}+q-3>0
$$

which is true for all $n \geq 0$ if $q \geq 4$, and in case of $q=3$ unless $n=2$. Therefore, if $h=N$ we necessarily have $q=2$, or we have $q=3$ with $n=2$ and consequently $N=4$. We argue first that the latter case does not occur.

Let $\sigma_{i}(\alpha)$ denote the i-th elementary symmetric polynomial in the α_{i}. Thus, for $g=2$, the L-polynomial of X is given by

$$
L(t)=\prod_{i=1}^{4}\left(1-\alpha_{i} t\right)=1-\sigma_{1}(\alpha) t+\sigma_{2}(\alpha) t^{2}-q \sigma_{1}(\alpha) t^{3}+q^{2} t^{4}
$$

By Poncaré duality we have $\sigma_{g+r}(\alpha)=q^{r} \sigma_{g-r}(\alpha)$, and the Lefschetz trace formula yields

$$
S_{m}(\alpha)=\sum_{i} \alpha_{i}^{m}=1+q^{m}-\# X\left(\mathbb{F}_{q^{m}}\right)
$$

Using $\sigma_{1}(\alpha)=S_{1}$ and $2 \sigma_{2}=S_{1}^{2}-S_{2}$ we obtain the following exact formula for the class number:

$$
\begin{aligned}
h & =L(1)=1+q^{2}-(1+q)(1+q-N)+\frac{1}{2}\left((1+q-N)^{2}-\left(1+q^{2}\right)+N_{2}\right) \\
& =-q+\frac{1}{2}\left(N^{2}+N_{2}\right)
\end{aligned}
$$

Now in case $h=N$ the condition $N_{2} \geq N$ reads as follows:

$$
2 q=N^{2}-2 N+N_{2} \geq N^{2}-N
$$

This is impossible if $q=3$ and $N=4$, and this concludes the proof that q must be 2 in all cases.
1.3. The case of $q=2$ and large genus. For $q=2$, the estimate (1.4) reduces to

$$
n^{2}+n\left(2^{g-1}-2 g-6\right)+1+2^{g-1}>0
$$

This holds for all $n \geq 0$ if $g \geq 5$, and in case of $g=4$ unless $n=3$. Therefore, if $h=N$ we have $g=2$ or $g=3$, or we have $g=4$ and necessarily $N=n=3$.

We argue now that the latter case may not occur. Indeed, now the inequality (1.3) yields

$$
3=N=h \geq(*)_{q=2, g=4, N=3}=3
$$

and is in fact an equality. However, the inequality was derived from (1.1) by estimating in particular $D_{2} \geq N=3$, although considering all divisors of degree 2 with support in the rational points yields the better bound

$$
D_{2} \geq\binom{ N+1}{2}=6
$$

This is a contradiction.
1.4. The case of genus 3 . We abbreviate $N_{m}:=\# X\left(\mathbb{F}_{q^{m}}\right)$ and keep the notation S_{m} and $\sigma_{i}(\alpha)$ from the $g=2$ case; however now for $g=3$. Manipulating symmetric polynomials we find

$$
\begin{aligned}
& \sigma_{1}(\underline{\alpha})=S_{1}=1+q-N \\
& \sigma_{2}(\underline{\alpha})=q-(1+q) N+\left(N^{2}+N_{2}\right) / 2 \\
& \sigma_{3}(\underline{\alpha})=\frac{1}{3}\left(1+q^{3}-N_{3}+(1+q-N)\left(-1+q-q^{2}-(1+q) N+\left(N+3 N_{2}\right) / 2\right)\right)
\end{aligned}
$$

Using again Poincaré duality in the form $\sigma_{g+r}(\alpha)=q^{r} \sigma_{g-r}(\alpha)$, that allows to compute the L-polynomial and in particular its value $h=L(1)$ as (we set $q=2$)

$$
h=\frac{1}{3} N_{3}+\frac{1}{2} N N_{2}+\frac{1}{6} N^{3}-2 N .
$$

Now $N_{3}=3 n_{3}+N$ and $N_{2}=2 n_{2}+N$ for some $n_{i}=\#\{\mathfrak{q} \in X ; \operatorname{deg}(\mathfrak{p})=i\} \in \mathbb{N}_{0}$, so the formula for the class number becomes

$$
h=n_{3}+N n_{2}+\frac{1}{6} N(N-2)(N+5)
$$

It is easy to see that $h>N$ unless $N=1$ or $N=2$. In both cases together we can determine in total five pairs of values for $\left(n_{2}, n_{3}\right)$. In each case we can determine the L-polynomial and SAGE tells us that two of its roots are real but not of absolute value $\sqrt{2}$. This concludes the argument to exclude curves of genus 3 .

We also performed a search among curves of genus 3 by a SAGE program [$\left.\mathrm{S}^{+} 09\right]$. The search divides naturally into the case of hyperelliptic curves and non-hyperelliptic curves. The latter embed as a smooth quartic in \mathbb{P}^{2} by means of the canonical embedding. My SAGE program found no curves with $N=h$ in both cases, thus indeed confirming the above proof.
1.5. Theorem and examples. Unfortunately, the table of genus 2 curves with $N=h$ in [Sti13] page 201 contains a further mistake. The curve of type III has $N=2$ and $N_{2}=6$ and consequently $h=3$. The correct SAGE computation gives us a complete list of isomorphism classes of examples. By analysing Artin-Schreier double covers $y^{2}+y=f(x)$ for rational functions $f \in \mathbb{F}_{2}(x)$, the list of examples can be confirmed by hand. We conclude that Theorem 223 of loc. cit. improves to:

Theorem. There are smooth projective curves X / \mathbb{F}_{q} of genus $g \geq 2$ such that

$$
\# X\left(\mathbb{F}_{q}\right)=\# \operatorname{Pic}_{X}^{0}\left(\mathbb{F}_{q}\right)
$$

if and only if $q=2$ and $g=2$. More precisely, there are exactly two isomorphism classes of such curves:

type	$N=h$	N_{2}	$L(T)$	equation
I	1	5	$1-2 T+2 T^{2}-4 T^{3}+4 T^{4}$	$Y^{2}+Y=X^{5}+X^{3}+1$
II	2	4	$1-T-2 T^{3}+4 T^{4}$	$Y^{2}+Y=X^{3}+1+\frac{1}{X}$

References

[LMD90] Lachaud, G., Martin-Deschamps, M., Nombre de points des jacobiennes sur un corps fini, Acta Arithmetica 56 (1990), no. 4, 329-340.
[S $\left.{ }^{+} 09\right]$ SageMath, the Sage Mathematics Software System (Version 7.5.1), The Sage Developers, 2017, http://www.sagemath.org.
[Sti13] Stix, J., Rational Points and Arithmetic of Fundamental Groups, Evidence for the Section Conjecture, Springer Lecture Notes in Mathematics 2054, Springer Verlag, 2013, xx +249 pp.

Jakob Stix, Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Strasse $6-8,60325$ Frankfurt am Main, Germany

E-mail address: stix@math.uni-frankfurt.de

